
PARALLEL COMPUTING OF METAL FORMING SIMULATION IN 

QFORM SOFTWARE 
 

Dmitry Gerasimov*, Arthur Gartvig 

 
QuantorForm Ltd., Moscow, Russia 

*Corresponding author: gerasimov@qform3d.com 

  
 

Abstract 

 

In this study, the effectiveness of parallelization of data and tasks implemented in QForm 

software is investigated. The dependence of the number of simultaneously working logical processors or 

cores of a multi-core CPU on the solving time of metal forming simulation is shown. The simulation 

processes are parallelized in QForm software by means of Intel® Math Kernel Library, so the principle of 

parallelization is not described in this article. The aim was to show how the existing solution could be 

effectively used for simulation of metal forming processes and which solving processes can be 

parallelized. 
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1. INTRODUCTION 

 

Each year the demands on numerical simulation speed and accuracy increase. When it comes to 

finite element method (FE) the finer FE-mesh is the more accurate simulation results are and the longer 

numerical simulation takes. 

The central processor unit (CPU) parameters primarily determine the speed of numerical 

simulation. Since multi-core CPUs are used in personal computers, the developers of simulation software 

face a problem of how to effectively parallelize a calculation process between cores (Schauer, 2008) or 

between logical processors (in the case of hyper-threading) (Marr et al., 2002) to fully utilize the 

capabilities of the CPU.  

There are a number of researches related to investigation of parallelization algorithms at FEM 

simulation (Cârstea & Cârstea, 2008; Hoole, 1990; Wu et al., 2011). The results of experiments how the 

number of used cores or processors influences on solving time are shown in some researches (Butrylo et 

al., 2004; Meyer et al., 2012). For example, it is shown in (Choporov, 2013) that speedup ratio by 

simulation with 4 logical processors (2 physical cores + 2 virtual cores) in comparison with one logical 

processor equals about 1,6. Computer with following parameters was used in this experiment: Intel Core 

i3-380 (2.53 GHz) CPU, 3 GB RAM, openSUSE 12.2 operating system (compiler gcc 4.7), openMP 

library for parallelization management.  

This paper describes how parallel processing by means of Intel® Math Kernel Library is used at 

simulation in QForm software (Biba & Stebunov, 2002) for numerical simulation of metal forming 

processes. 

   

2. PARALLEL COMPUTING IN QFORM SOFTWARE 

 

Two processes are launched after the start of a simulation in QForm software: QSolver.exe and 

QFsolvhost.exe (figure 1).  

    
Fig. 1. Parallelized and incompletely parallelized processes in QForm software 



 

The process QFsolvhost.exe solves systems of equations and it uses all computational capabilities 

of a system and parallelizes a simulation by means of Intel® Math Kernel Library.  

The process QSolver.exe performs many necessary tasks such as: FE-mesh generation, 

determination of contacts between deformable shape and tools, recording of simulation results to the hard 

disk, determination of necessary simulation step size and other tasks. Some tasks performed with 

QSolver.exe are also parallelized, but the effect of this parallelization is not significant in comparison to 

the processes of QFsolvhost.exe. 

 

3. EXPERIMENT 

 

The computer used in the experiment had following parameters: processor Intel ® Core ™ i7-

5960X CPU @ 3.00GHz (8 cores) with cache L1 = 512 KB, cache L2 = 2 MB, cache L3 = 20 MB, RAM 

64 GB, operation system Windows 10 Pro x64.  
To estimate how effectively the calculations are parallelized in QForm software, several simple 

three dimensional simulations of cylinder upsetting in flat dies were performed. To minimize the effect of 

some tasks using only one logical processor (QSolver.exe), the simulation was performed without 

influence of remeshing, friction and thermal problem.  

Four cases with different mesh densities of the workpiece were investigated in this experiment: 

with finite element sizes of 20 mm, 15 mm, 10 mm and 7 mm. The solving time of only one simulation 

record was measured in the experiment: the height change from 305 mm to 300 mm (figure 2).  

 

  
 
Fig. 2. Scheme of upsetting (left) and finite element mesh with element size of 20 mm (right) 

 

Hyper-threading was activated in the first part of the experiment so the simulation process was 

parallelized in 16 logical processors with two logical processors for each core. By means of the command 

«set affinity» in task manager of Windows 10 operating system, a different number of logical processors 

can be activated for the process QForm.exe. It was investigated how the number of simultaneously 

activated logical processors (1, 4 and 16) influenced the simulation time. Time measured for all cases is 

shown in table 1.  
 

Table 1. Solving time by using of different number of logical processors. Hyper-threading: on. 

 

Size of 

element, 

mm 

Number 

of FE-

nodes 

Number of 

elements 

Solving time by using of 

different number of 

logical processors (LP), 

sec 

Speedup 

ratio for 

4 LP 

t1 LP/t4 LP 

Speedup 

ratio for 

16 LP 

t1 LP/t16 LP 
t1 LP t4 LP t16 LP 

20 9.430 50.500 12,4 6,1 2,6 2,0 4,8 

15 21.800 120.300 57 27,1 9,6 2,1 5,9 

10 68.700 396.100 499 221 73 2,3 6,8 

7 194.500 1.146.000 4082 1722 509 2,4 8,0 

 

Speedup ratio is an important index in measuring the performance of the parallel computing. In 

this paper speedup ratio for n logical processors is defined as the ratio of solving time with one logical 



processor to solving time with n logical processors. The finer FE-mesh the more effectively parallel 

computing is performed in QForm.  

 
Table 2. Solving time by using of different number of cores. Hyper-threading: off. 

 

Size of 

element, 

mm 

Number 

of FE-

nodes 

Number of 

elements 

Solving time by using of 

different number of 

cores, sec 

Speedup 

ratio for 

4 cores 

t1 core/t4 cores 

Speedup 

ratio for 

8 cores 

t1 core/t8 cores t1 core t4 cores t8 cores 

20 9.430 50.500 12,8 3,8 2,6 3,4 4,9 

15 21.800 120.300 56,7 16 10,1 3,5 5,6 

10 68.700 396.100 479 133 74 3,6 6,5 

7 194.500 1.146.000 3658 1002 539 3,7 6,8 

 

Additional numerical simulations with switched off hyper-threading were performed to estimate 

the benefit of hyper-threading. The results are shown in table 2. When simultaneously working of all 

cores the simulations with activated hyper-threading were 1-6% faster depending on FE-mesh density in 

the context of this experiment.  

The larger the number of remeshings and simulation steps the more processes are not parallelized 

during modelling (figure 1). At the same time the effect of parallelization depends on FE-mesh density, 

how it was shown in the examples above. To estimate and show the speedup ratio for whole simulation 

process the solving time of fork forging simulation with different simulation parameters (figure 3) was 

investigated.   

 

 
 
Fig. 3. Results of bulk forging simulation. Mesh adaptation factor = 1 

 

Solving time of whole hot forging simulation process with different number of FE-nodes and 

simulation steps is shown in table 3.  

 
Table 3. Solving time of hot forging simulation by using of different number of cores. 

Hyper-threading: off. 

 

Adaptation 

factor, mm 

Number 

of FE-

nodes 

Number 

of 

elements 

Number of 

simulation 

steps 

Solving time by using of 

different number of 

cores, sec 

Speedup 

ratio for 

8 cores 

t1 core/t8 cores t1 core t8 cores 

1 12.800 58.000 168 2734 1113 2,5 

2 56.000 267.000 250 33.012 11.546 2,9 

3 126.000 615.000 371 179.625 51.325 3,5 

 

In view of the fact that not all processes can be parallelized during simulation and that often it is 

necessary to investigate and to simulate several cases of one metal forming process (different die or 



workpiece geometries, different initial parameters of deformed material, different friction conditions etc.) 

it makes sense to use the multitask possibility (simulation of several technological processes or cases 

simultaneously). Multitask feature can significantly increase the simulation efficiency. How the solving 

time depends on the number of simultaneously started identical simulations is shown in table 4. The 

simulation process showed in figure 3 with mesh adaptation factor equaled 1 (12.800 FE-nodes) was 

investigated in this experiment. 
 

Table 4. Solving time when using of multitask feature. 8-core processor was used for simulations. 

 

Number of simultaneously 

started simulations on one 

computer 

Simulation 

time, min 

Specific simulation 

time of one simulation 

process, min 

1 19 19 

2 25 12,5 

4 34 8,5 

8 65 8,1 

16 118 7,4 

 

4. CONCLUSION 

 

The effectiveness of parallelization during FE simulation in QForm software depends generally 

on the FE-mesh density. Parallelization is more effective in simulations with a higher number of FE-

nodes. Total number of non-parallelized or incompletely parallelized processes depends on the number of 

remeshings and simulation steps. Maximum measured speedup ratio equals 6,8 for 8-Core processor at 

full load with switched off hyper-threading. Calculation speed can be additionally increased by means of 

hyper-threading: maximum measured speedup ratio equals 8 for 8-Core processor at full load.  
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